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Abstract
The tunnelling conductance spectrum of a normal-metal/insulator/singlet super-
conductor is calculated from the reflection amplitudes using the Blonder–
Tinkham–Klapwijk (BTK) formulation. The pairing symmetry of the super-
conductor is assumed to be dx2−y2 + is or dx2−y2 + idxy . It is found that in
the (dx2−y2 + is)-wave case there is a well defined conductance peak in the
conductance spectra, in the amplitude of the secondary s-wave component. In
the (dx2−y2 + idxy)-wave case the tunnelling conductance has residual values
within the gap, due to the formation of bound states. The bound-state energies
depend on the angle of the incident quasiparticles, and also on the boundary
orientation. On the basis of this observation, an electron-focusing experiment
is proposed to probe the (dx2−y2 + idxy)-wave state.

1. Introduction

Two decades ago, Blonder et al [1] used the Bogoliubov–de Gennes (BdG) equations to
calculate the tunnelling conductance of normal-metal/s-wave superconductor contacts, with a
barrier of arbitrary strength between them, in terms of the probability amplitudes of Andreev [2]
and normal reflection. In the Andreev reflection process an electron incident on the barrier
can be reflected as an electron (normal reflection), reflected as a hole without changing its
momentum (Andreev reflection), and it can also be transmitted into the superconductor as an
electron-like or hole-like quasiparticle.

Recently the BTK theory was extended by several groups to consider the anisotropy of the
pair potential. In d-wave superconductors the pair potential changes sign under a 90◦ rotation.
So under appropriate orientation of the a-axis of the d-wave superconductor the transmitted
quasiparticle ‘feels’ different signs of the pair potential. This results in the formation of bound
states within the energy gap, which are detected as peaks in the conductance spectra. In the
d-wave superconductor there is a peak at E = 0 for a great range of angles of incidence of the
incoming electron. This range depends on the surface orientation [3]. In particular, for (110)
surfaces the peak exists at E = 0 for all angles of incidence, and disappears for the (010) and
(100) surfaces.
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In the presence of another barrier inside the normal metal, additional subgap bound states
exist due to multiple Andreev reflections [4, 5]. The same phenomenon occurs in the d-wave
superconductor/insulator/d-wave superconductor system. For these systems the quasiparticle
current has been examined by several groups [6–8], using BTK formalism with recursive
relations for the determination of the probability amplitudes.

There is a competition between different pairing symmetries in the bulk. The coexistence
of a subdominant order parameter for the bulk depends on the strength of the secondary-order-
parameter attractive interaction relative to the attractive interaction in the dominant pairing
channel. When the secondary order parameter is strong enough, a second phase transition
occurs at a temperature Tc1 < Tc which depends on the strength of the secondary order
parameter. Numerical results show that when such coexistence is realized, the relative phase
of the order parameters is π/2, leading to a dx2−y2 + is or dx2−y2 + idxy pairing state in the
bulk. The temperature dependences of the various thermodynamic quantities and transport
properties change from power laws to exponentials below Tc1 [9, 10]. When the secondary
order parameter is not strong enough, only the dx2−y2 -wave order parameter appears for the
bulk. For (110) surfaces the dx2−y2 -wave order parameter changes sign under reflection at the
surface and vanishes at the surface. On the other hand, the s and dxy ones do not change sign
and are not affected by the presence of the surface, so there is a possibility of their presence
near the surface even when their attractive interaction is not strong enough for them to exist in
the bulk [11, 12].

The presence of the secondary order parameter near a surface is manifested in tunnelling
spectra as a splitting of the zero-energy conductance peak (ZEP) at low temperatures at
zero external field and further non-linear splitting with increasing external field [13]. The
field dependence of the splitting of the ZEP in the tunnelling spectra of YBCO has been
examined [14,15]. The observation is consistent with a dx2−y2 + is surface order parameter or
a dx2−y2 + idxy order parameter.

In this paper we extend the BTK formula to calculate the tunnelling conductance in a
normal-metal/insulator/(dx2−y2 +is)-wave or (dx2−y2 +idxy)-wave superconductor. In particular
we find that in the dx2−y2 + is state the conductance peak remains rigid at the energy of the
subdominant (s) order parameter [16, 17]. Also, in the dx2−y2 + idxy state, there is a plateau
region inside the gap due to the formation of bound states at discrete values of the quasiparticle
trajectory angle θ , for all junction orientations. In addition, the evolution of the tunnelling
conductance with temperature depends on the nature of the subdominant order parameter.
These features can be used to distinguish between states with broken time-reversal symmetry.

2. The model for the NS interface

We consider the normal-metal/insulator/superconductor junction shown in figure 1. We choose
the y-direction to be parallel to the interface, and the x-direction to be normal to the interface.
The insulator is modelled by a delta function, located at x = 0, of the form V δ(x). The
temperature is fixed at 0 K.

The motion of quasiparticles in inhomogeneous superconductors is described by the BdG
equations

He(r)u(r) +
∫

dr′ �(s,x)v(r′) = Eu(r)∫
dr′ �∗(s,x)u(r′)− H∗

e (r)v(r) = Ev(r)

(1)
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Figure 1. The geometry of the normal-metal/insulator/superconductor interface. The vertical line
along the y-axis represents the insulator. The arrows illustrate the transmission and reflection
processes at the interface. In this figure, β is the angle between the normal to the interface and
the a-axis of the superconductor, and θ is the angle between the incident electron beam and the
normal. At the top, the d-wave order parameter is shown.

where the single-particle Hamiltonian is given by

He(r) = −h̄2∇2
r/2me + V (r)− EF

and E is the energy measured from the Fermi energy EF . �(s,x) is the pair potential,
after a transformation from the position coordinates r, r′ to the centre-of-mass coordinate
x = (r + r′)/2, and the relative vector s = r − r′. After Fourier transformation the pair
potential depends on the related wave vector k, and x. In the weak-coupling limit, k is fixed
on the Fermi surface (|k| = kF ), and only its direction θ is a variable. Also we neglect any
spatial variation near the interface, i.e. the pair potential does not depend on x. The pair
potential has the form

�(x, θ) =
{

0 x < 0

�(θ) x > 0
(2)

where θ is the angle of the quasiparticle trajectory measured from the x-axis. When a beam
of electrons is incident from the normal metal to the insulator, with an angle θ , the general
solution of equations (1) is a two-component wave function, which for x < 0 is written as

�I =
(

1
0

)
eiqex cos θ + a

(
0
1

)
eiqhx cos θ + b

(
1
0

)
e−iqex cos θ (3)

while for x > 0, the solution is

�II = c

(
u+φ+

v+

)
eikex cos θ + d

(
v−φ−
u−

)
e−ikhx cos θ (4)

wherea, b, are the amplitudes for Andreev and normal reflection, and c, d are the amplitudes for
transmission into the superconductor as electron-like and hole-like quasiparticles respectively.
In the following we assume that qe ≈ qh ≈ ke ≈ kh ≈ kF . The latter approximation is valid
within the BCS weak-coupling theory. The BCS coherence factors are given by

u2
± = [1 +

√
E2 − |�±(θ)|2/E]/2 (5)
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and

v2
± = [1 −

√
E2 − |�±(θ)|2/E]/2. (6)

The internal phase arising from the energy gap is given by φ± = [�±(θ)/|�±(θ)|], where
�+(θ) = �(θ) (�−(θ) = �(π − θ)) is the pair potential experienced by the transmitted
electron-like (hole-like) quasiparticle. Using the matching conditions for the wave function at
x = 0,�I(0) = �II(0) and� ′

II(0)−� ′
I(0) = (2mV/h̄2)�I(0), the magnitudes of the Andreev

and normal reflection, Ra = |a|2 and Rb = |b|2, are obtained as [16]

Ra = σ 2
N |n+|2

|1 + (σN − 1)n+n−φ−φ∗
+|2 (7)

Rb = (1 − σN)|1 − n+n−φ−φ∗
+|2

|1 + (σN − 1)n+n−φ−φ∗
+|2 (8)

where n± = v±/u±. The tunnelling conductance, normalized by that in the normal state, is
given by [1]

σ(E) =
(∫ π/2

−π/2
dθ σ s(E, θ)

)/(∫ π/2

−π/2
dθ σN

)
. (9)

According to the BTK formula, the conductance of the junction σ s(E, θ) is expressed in terms
of the probability amplitudes a and b: σ s(E, θ) = 1 + Ra − Rb. The transparency of the
junction σN is connected to the barrier height V by the relation

σN = 4 cos2 θ

Z2 + 4 cos2 θ
(10)

where Z = 2mV/h̄2kF denotes the strength of the barrier. In the Z = 0 (large-σN ) limit the
interface is regarded as a weak link, showing metallic behaviour, while for large values of Z
(σN = 0) the interface becomes insulating.

We consider the following cases:

(a) In the case of a dx2−y2 -wave superconductor,

�(θ) = �1(T ) cos[2(θ − β)] (11)

where β denotes the angle between the normal to the interface and the x-axis of the
crystal. The temperature dependence of the gap follows the usual BCS relation, namely
�1(T ) = �d

√
1 − T/Td, where Td is the transition temperature.

(b) In the (dx2−y2 + is)-wave case,

�(θ) = �1(T ) cos[2(θ − β)] + i�2(T ) (12)

where �2(T ) = �s
√

1 − T/Ts, and Ts is the transition temperature for the s-wave
component.

(c) In the (dx2−y2 + idxy)-wave case,

�(θ) = �1(T ) cos[2(θ − β)] + i�2(T ) sin[2(θ − β)] (13)

where the angular form of the secondary component is obtained by the substitution for β
in the dx2−y2 -wave order parameter with β + π/4. �2(T ) = �dxy

√
1 − T/Tdxy follows

the BCS relation, and Tdxy is the transition temperature for the dxy-wave component.
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3. Tunnelling conductance characteristics

In figures 2–4 we plot the tunnelling conductance σ(E) as a function of E/�0 for various
values of Z, for different orientations (a) β = 0, (b) π/8, (c) π/4. The pairing symmetry of
the superconductor is: dx2−y2 -wave symmetry, with �d = 0.7�0, in figure 2; (dx2−y2 + is)-
wave symmetry, with �d = 0.7�0, �s = 0.3�0, in figure 3; (dx2−y2 + idxy)-wave symmetry,
with �d = 0.7�0, �dxy = 0.3�0 in figure 4. It is clear from these figures that the peaks are
narrowed by the increase of Z. In this section the temperature is fixed at 0 K.
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Figure 2. Normalized tunnelling conductance σ(E) as a function of E/�0 for Z = 0 (solid line),
Z = 2.5 (dotted line), Z = 10 (dashed line), for different orientations (a) β = 0, (b) π/8, (c) π/4.
The pairing symmetry of the superconductor is dx2−y2 ; �d = 0.7�0. The temperature is T = 0.

For β = 0, i.e. when the lobes of the dominant d-wave component point towards the
junction interface, the position of the conductance peak is near the energy gap�d in all of the
above pairing symmetries. This peak mainly arises from the bulk density of states.
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Figure 3. As figure 2, but the pairing symmetry of the
superconductor is dx2−y2 +is;�d = 0.7�0;�s = 0.3�0.

Figure 4. As figure 2, but the pairing symmetry of
the superconductor is dx2−y2 + idxy ; �d = 0.7�0;
�dxy = 0.3�0.

For β �= 0 another peak exists in the conductance spectra, for the dx2−y2 -wave and
(dx2−y2 + is)-wave cases, but its physical origin is different to that found near �d. For the
d-wave case this peak exists at E = 0 for all of the non-zero values of β, due to the different
sign of the pair potential that the transmitted quasiparticles feel. However, the height of the
conductance peak (ZEH) depends on the orientation angle β. For a given angle β, the ZEH is
proportional to the range of θ -angles for which sign change occurs. This is seen in figure 2(c) for
β = π/4 where the ZEH is maximum, since for this orientation the transmitted quasiparticles
feel a different sign of the pair potential for all angles −π/2 < θ < π/2. On the other hand,
for β = π/8 in figure 2(b) the range of angles is reduced and the ZEH takes a lower value.

For the (dx2−y2 + is)-wave case in figure 3, the position of the conductance peak is shifted
to the energy E = �s, for all values of β. For each value of β, its height depends on the range
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of θ -angles where the transmitted quasiparticles feel a different sign of the pair potential. For
β = π/4 the conductance peak, as seen in figure 3(c) at E = �s, has its maximum value,
since the transmitted quasiparticles feel the sign change of the pairing potential for all angles
θ . This range is reduced for other orientations, and for β = 0 it goes to zero, as we can see in
figure 3(a). Also a subgap opens within the conductance spectra due to the imaginary s-wave
component. Within the subgap in the tunnelling limit, the tunnelling conductance is zero,
σ(E) = 0, while in the metallic limit (Z = 0), σ(E) = 2 independently of the orientation,
as in the s-wave case. In the Z = 0 case, the normal-reflection coefficient is zero, while the
Andreev reflection coefficient is unity. In this case the charge transport into the superconductor
is twice as large as in the normal state, for energies within the subgap region.

In the dx2−y2 + idxy case, seen in figure 4, the tunnelling conductance has residual values
within the gap for all orientations β. In particular for β = 0, as seen in figure 4(a), in the
tunnelling limit, the conductance σ(E = 0) at E = 0 has a non-zero value in contrast to the
(dx2−y2 + is)-wave case where it is zero. In the dx2−y2 + is case for β = 0, there is no angle θ
for which the transmitted quasiparticles experience the sign change of the pair potential, and
the tunnelling conductance goes to zero. The situation is different for the dx2−y2 + idxy case,
where for β = 0 the transmitted quasiparticles feel the sign difference due to the secondary
order parameter dxy .

Also, the zero-energy conductance height evolves very differently with the orientation
of the superconductor for the three pairing symmetries. This is seen in figure 5 where the
dependence of the zero-energy conductance height on β is plotted, for Z = 2.5, for the three
pairing symmetries. It is seen that for the (dx2−y2 + idxy)-wave case (dashed line), for β close
to π/4, the height representing the plateau-like feature seen in figure 4 is enhanced. Also, for
angles close to zero, the height of the ZEP for the (dx2−y2 + idxy)-wave case is reduced, but
is not zero. Note that the height for β = 0 remains finite even in the large Z-limit, while the
height in the (dx2−y2 + is)-wave case goes to zero.

−0.5 −0.3 −0.1 0.1 0.3 0.5
β/π

0

2

4

6

8

10

σ(
E

=
0)

Figure 5. Normalized tunnelling conductance σ for E = 0 as a function of β for Z = 2.5,
and T = 0. The pairing symmetry of the superconductor is: dx2−y2 (solid line), �d = 0.7�0;
dx2−y2 + is (dotted line), �d = 0.7�0, �s = 0.3�0; dx2−y2 + idxy (dashed line), �d = 0.7�0,
�dxy = 0.3�0.
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4. Bound-state energies

These features are explained if we calculate the energy of the mid-gap state, which is given
for large Z by the value at which the denominator of equations (7), (8) vanishes. The equation
giving the energy peak level is written as [16]

φ−φ∗
+n+n−|E=Ep = 1.0. (14)

In the dx2−y2 -wave case, for a given angle β, this equation has the solution E = 0 for a
finite range of angles θ . For β = π/4 the solution is E = 0 for −π/2 < θ < π/2,
since n+n−|E=0 = −1, and also the transmitted quasiparticles feel a different sign of the pair
potential, i.e. φ−φ∗

+|E=0 = −1. In the (dx2−y2 + is)-wave case for β = π/4, the solution is
E = �s in the θ -interval [0, π/2]. In this case the n+, n− and the internal phases are varied
in such a way that equation (14) is satisfied for E = �s and a mid-gap state is formed. When
a mid-gap state exists, the tunnelling conductance σ s(E, θ) is equal to 2 for all θ and the
peak in σ(E) seen in figures 2, 3 is due to the normal-state conductance σN in equation (10),
which depends inversely on Z2 for large Z. For intermediate angles β, the peak height of the
tunnelling conductance σ(E) is proportional to 8β for 0 < β < π/4 [3], and for β = 0 the
range of θ -angles for which equation (14) has solutions collapses to zero in both symmetry
states, and no bound states are formed. Then σ(E) goes to zero as 1/Z2 and there is no
conductance peak. For energies different to the bound-state energy Ep, for large Z, σ s(E, θ)

is inversely proportional to Z2, as is σN , and the tunnelling conductance has a constant value
as we can see in figure 2, for E > 0. In the (dx2−y2 + idxy)-wave case for fixed β, the solutions
of (14) depend on bothE and θ , as seen in figure 6, where the bound-state energyEp is plotted
for β = 0, π/16, π/8, π/4, as a function of θ . In this case the mid-gap state for a given β

−0.4 −0.2 0 0.2 0.4 0.6
 θ/π

0

0.2

0.4

0.6

0.8

E
p

 β=0
 β=π/16
 β=π/8
 β=π/4

Figure 6. Bound-state energy Ep, for T = 0, versus the quasiparticle angle θ for different
orientations β = 0, π/16, π/8, π/4. The pairing symmetry of the superconductor is dx2−y2 + idxy
with �d = 0.7�0, �dxy = 0.3�0.
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is formed for a pair of angles θ , for energies within the gap. This observation can be used
to explain the residual values of the tunnelling conductance within the gap, seen in figure 4,
as follows. When a bound state is formed, the conductance σ s(E, θ) is equal to 2 exactly at
the bound-state energy for the two discrete values of θ , and the peak in the σ(E) should be
proportional to Z2 for large Z for these values of θ . For the rest of the quasiparticle trajectory
angles θ , the tunnelling conductance σ(E) has a constant value. Thus the height for a given
energy and angle β is determined from the interplay of two competitive factors, i.e. the bound-
state energy formed at a couple of θ -angles, which gives a contribution proportional to Z2,
and that for the rest of the θ -angles, which gives a constant-value contribution independent
of Z. Also the steps in θ when evaluating the integral in equation (9) are very much crucial,
since the calculation of the tunnelling conductance has to be performed exactly at the bound-
state energy. If this is not the case, then the peak due to the bound states in the tunnelling
conductance would have a smaller value which would depend on Z in general. We conclude
that in the dx2−y2 + idxy case the discrete values of the quasiparticle trajectory angle θ for which
a bound state is formed compared to the interval of θ -angles in the other two pairing states
explains the reduced height of the tunnelling conductance within the gap. However, if we
calculate the conductance σ s(E, θ) for the dx2−y2 + idxy case at a given β for a value of θ for
which a bound state occurs, then the conductance should develop a peak at the bound-state
energy, where σ s(E, θ) is equal to 2. For the rest of the energies, σ s(E, θ) goes to zero. This
is seen in figure 7 where the conductance σ s(E, θ) for Z = 2.5 is plotted for fixed β = π/4
as a function of the energy E, for different values of the angle θ = π/4, 3π/8, π/2 for which
bound states occur. We see that for θ = π/4 the peak is at E = 0. However, as we change the
angle θ towards π/2, the peak level moves from E = 0 to E = �dxy .

0 0.5 1 1.5 2
E/ ∆0

0

0.5

1

1.5

2

σ

θ=π/4
θ=3π/8
θ=π/2

s
(E

, θ
)

−

Figure 7. Conductance σ s(E, θ) for Z = 2.5, and T = 0, as a function of E for fixed angle
β = π/4, at different angles θ = π/4, 3π/8, π/2 for which a bound state is formed at a different
value of E. The pairing symmetry of the superconductor is dx2−y2 + idxy with �d = 0.7�0,
�dxy = 0.3�0.



1274 N Stefanakis

The occurrence of residual density of states in the (dx2−y2 + idxy)-wave case is unaffected
by the calculation of σ(E) including the self-consistency of the order parameter [18]. In this
calculation an enhancement appears at E = �dxy , for β = π/4. In our calculation we also
observed a similar enhancement at E = �dxy when the definition

σ(E) =
∫ π/2
−π/2 dθσ s(E, θ) cos θ∫ π/2

−π/2 dθσN cos θ

was used for the calculation of the tunnelling conductance. The cos θ factor was included in
the integration formula to calculate the x-component of the tunnelling spectra. Within this
definition the bound state at θ = 0 contributes more (due to the cos θ factor) than the bound
state at θ close to π/4. As seen in figure 6 the bound state at θ = 0 corresponds to energy
E = �dxy causing the peak in σ(E) at E = �dxy . Also in a self consistent calculation the
bound state at (θ = π/4, E = 0) contributes less in σ(E) than that at (θ = 0, E = �dxy )

due to the depletion of the order parameter near the interface. In any case the peak near
E = �dxy in (dx2−y2 + idxy)-wave pairing state is much more suppressed than that at E = �s

in (dx2−y2 + is)-wave state.
The angular dependence of the bound-state energy for fixed boundary orientation at the

xy-plane can be used to identify the (dx2−y2 + idxy)-wave pairing state. The method that we
propose here is the two-point spectroscopy described by Benistant et al [19]. They measured
the reflected hole distribution along the boundary y-direction when electrons are injected with
a certain distribution P(φ) through a point contact, at y = 0, into a normal metal of thickness
d attached to an s-wave superconductor. The presence of a magnetic field parallel to the z-axis
deflects the trajectories of the electrons and leads to an asymmetric distribution of angles of
incidence in the normal-metal/superconductor interface. Also the magnetic field focuses the
reflected holes into a second point contact which acts as a hole collector. Moving the second
point contact around the first one or using several point contacts along the direction parallel to
the interface, we are able to measure the intensity of the Andreev reflected holes as a function
of the y-direction. In the s-wave case one observes a single peak called the ‘focusing peak’ at
y = y0 (with the injection point at y = 0), since the Andreev reflected probability amplitudes
are independent of the injection angle. For the (dx2−y2 + idxy)-wave case, the bound-state
energies, for which the reflection coefficient is equal to one, occur at angles θ1 < 0, θ2 > 0
for a given boundary orientation and large barrier strength Z. These bound states will give
rise to a second peak in the hole distribution, at a different position, in addition to the one
due to the focusing. The presence of the magnetic field leads to an asymmetric distribution of
angles of incidence in the interface, and the trajectory which corresponds to the bound state
at θ1 has a shorter path than that at θ2 and the corresponding injected electrons have smaller
angle φ. If the angular distribution probability P(φ) of the injected particles is peaked at small
injection angles, this will lead to a contribution to the secondary peak from the bound state
at θ1 larger than that from the bound state at θ2. This new peak would be observed for all
energies for which bound states exist in a (dx2−y2 + idxy)-wave superconductor. In the cases of
a dx2−y2 -wave superconductor and a (dx2−y2 + is)-wave superconductor, the resonance exists
only for E = 0 and E = �s respectively. The magnetic field shifts the bound state spectrum
by �E = vs · k ∼ sinθ [12], where vs is the superfluid velocity. Thus, one has to take into
account this additional energy shift due to the external field for the correct interpretation of the
experimental data. Experiments of this kind require high-quality normal-conducting crystal
and point contacts for the electron injection. Any voltage drop has to occur at the point contact
for the electrons to move ballistically in the normal metal. A similar procedure has been
proposed by Honerkamp and Sigrist [20] for discriminating between unitary and non-unitary
triplet states for the superconductor Sr2RuO4.
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5. Temperature dependence of the tunnelling spectra

At finite temperatures the tunnelling conductance is calculated from the relation [21]

σ(eV ) =
∫ ∞

−∞
dE

[
−∂f (E + eV )

∂E

] (∫ π/2

−π/2
dθ σ s(E, θ)

)/(∫ π/2

−π/2
dθ σN

)
. (15)

eV is the electron energy and f (E) is the Fermi function f (E) = 1/(eβE + 1), where
β = 1/kBT . In the case of a two-component order parameter, we assume that below a surface
transition temperature a subdominant order parameter can develop which spontaneously breaks
the time-reversal symmetry. Its amplitude is below the value for the formation of a state with
spontaneously broken time-reversal symmetry in the bulk [12]. The temperature dependence
of the pair potential amplitude is assumed to obey the usual BCS relation. As a consequence,
under the coexistence of the secondary component, the critical temperatures for the dominant
d wave, Td, and the subdominant s (dxy) components, Ts (Tdxy ), directly correspond to the
amplitude of the attractive interaction in each case.

Figure 8 shows the tunnelling conductance σ(eV ) for different temperatures T/Td =
0.1, 0.2, 0.3, 0.4, in the large-barrier-strength limit Z = 10, β = π/4. The pairing symmetry
of the superconductor is dx2−y2 -wave symmetry in figure 8(a), (dx2−y2 +is)-wave symmetry, with
Ts = 0.3Td, in figure 8(b), (dx2−y2 + idxy)-wave symmetry, with Tdxy = 0.3Td, in figure 8(c).
It is seen that due to the thermal occupation of states contributing to the tunnelling current,
the peaks are becoming broadened as the temperature increases. In the dx2−y2 -wave case,
as seen in figure 8(a), the ZEP is suppressed when the temperature increases and disappears
almost at the critical temperature. This feature of the calculated spectra is consistent with
the experimental results for YBa2Cu3O7−δ obtained by low-temperature scanning tunnelling
spectroscopy [4]. The evolution of the conductance spectra with temperature is qualitatively
similar to that obtained by the calculation including the self-consistency [22]. On the other
hand, in the (dx2−y2 + is)-wave case, seen in figure 8(b), the tiny subgap of the order of
�s = 0.3�0 at T = 0 disappears with the increase of the temperature. For T > Ts it follows
the usual dx2−y2 -wave-like dependence. In the (dx2−y2 + idxy)-wave case, shown in figure 8(c),
the zero-energy height is suppressed with the increase of the temperature. For T > Tdxy the
temperature dependence of the spectra for the (dx2−y2 + idxy)-wave state is similar to that for
the dx2−y2 -wave case.

In figure 9 we plot the ZEH as a function of temperature for the three pairing states. For the
dx2−y2 -wave case the ZEH behaves as T −1. For the (dx2−y2 + is)-wave case the ZEH increases
up to T = 0.2Td and then decreases with increasing temperature. For T > Ts it follows the
dx2−y2 -wave behaviour. The downturn of the ZEH at low temperatures in the (dx2−y2 +is)-wave
case accords with the ZEP splitting and has also been observed experimentally (see figure 1
in reference [13]). In the (dx2−y2 + idxy)-wave case the ZEH decreases with T on different
scales for T < Tdxy and T > Tdxy , indicating the different pairing states. In all cases the
transition from the dx2−y2 -wave case to the (dx2−y2 + is)-wave case or (dx2−y2 + idxy)-wave case
is continuous.

In the metallic limit (Z = 0) (not presented in the figure), the tunnelling conductance at
eV = 0 decreases, as the temperature increases, from its zero-temperature value σ(eV ) = 2,
to the normal-state value σ(eV ) = 1 at the transition temperature. The variation with T for the
(dx2−y2 + is)-wave case ((dx2−y2 + idxy)-wave case) for T < Ts (Tdxy ) deviates from the dx2−y2 -
wave behaviour. In both cases where time-reversal symmetry is broken, a change of slope
occurs in the σ(eV = 0) versus T diagram, at the subdominant-order-parameter transition
temperature. However, in this case the variation with T is similar for the dx2−y2 + is and
dx2−y2 + idxy cases, and thus it cannot be used to discriminate between the two pairing states.
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Figure 8. Normalized tunnelling conductance σ versus the applied voltage eV , for different
temperaturesT/Td = 0.1, 0.2, 0.3, 0.4. The barrier strength isZ = 10, and the junction orientation
is fixed at β = π/4. The pairing symmetry of the superconductor is: dx2−y2 in (a); dx2−y2 + is
with Ts = 0.3Td in (b); dx2−y2 + idxy with Tdxy = 0.3Td in (c).

6. Conclusions

We calculated the tunnelling conductance in normal-metal/insulator/anisotropic super-
conductors, using the BTK formalism. We showed that the conductance peak for (110)
surface orientation, in a dx2−y2 -wave superconductor, appears at zero energy, and is shifted
according to the amplitude of the secondary order parameter in the (dx2−y2 + is)-wave case. In
the (dx2−y2 + idxy)-wave case the tunnelling conductance has residual states within the energy
gap. These are due to the formation of bound states at discrete values of the trajectory angle
θ for each boundary orientation angle β, for energies within the gap. These bound states
explain both the residual states within the subgap and also the small height of the conductance
within the subgap region. The calculation of the conductance σ s(E, θ) for a given boundary
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Figure 9. Normalized tunnelling conductance σ for eV = 0 as a function of the temperature T/Td
for Z = 10, and β = π/4. The pairing symmetry of the superconductor is: dx2−y2 (solid line);
dx2−y2 + is with Ts = 0.3Td (dotted line); dx2−y2 + idxy with Tdxy = 0.3Td (dashed line).

orientation at an incident angle θ for which a bound state occurs shows an enhancement at
the bound-state energy. The dependence of the energy of the bound state on θ can be used
within the method of electron focusing to detect the (dx2−y2 + idxy)-wave state. In such a case,
besides the focusing peak, there is another peak in the reflected hole distribution spectrum for
all energies of the injected electrons less than the amplitude of the secondary order parameter.
This peak should also be observed for the dx2−y2 -wave and (dx2−y2 + is)-wave cases, but only
at the energies eV = 0, eV = �s respectively.

The zero-energy conductance peak decreases as T −1 with increasing temperature and
disappears almost at the transition temperature for the dx2−y2 -wave case. The temperature
dependence of the ZEH deviates from the usual T −1-behaviour of the dx2−y2 case, in the case
where a subdominant surface order parameter is developed, for T < Tc1, where Tc1 is the
transition temperature for the subdominant order parameter. These features can be used to
distinguish between states with broken time-reversal symmetry.

Throughout this paper the spatial variation of the dominant order parameter near the
surface, which depends on the boundary orientation, is ignored for simplicity. As a con-
sequence, since the nucleation of the secondary order parameter near the surface depends on
the strength of the dominant one, the spatial variation of the secondary order parameter is
also ignored. We expect more drastic changes when the orientation is β = π/4, where the
suppression of the dominant order parameter is more significant. However, since the features
presented here are intrinsic and are generated by the existence of surface bound states, the
essential results do not change qualitatively.

Also, we assumed perfectly flat interfaces in the clean limit, so any impurity scattering
and the effect of the surface roughness are ignored. Generally, surface roughness will lead to
a statistical distribution of the outgoing trajectories, and will alter the results presented. The
effect of surface roughness on the tunnelling effect in interfaces between normal metals and
superconductors with the time-reversal symmetry broken has been studied previously [23].
It was found that in the dx2−y2 + idxy case, additional bound states are formed due to the
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surface roughness. Also, in a dx2−y2 -wave superconductor, the ZEP may appear even for (100)
interfaces with surface roughness [12].

Also, in a more realistic treatment of the problem, one has to take into account also the
thickness of the barrier. In that case additional resonances are expected in the tunnelling spectra
due to multiple Andreev reflections within the barrier, besides the ones due to the bound states.
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